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from (5.5 , n
( ). 8 = mini,‘ EP, > LN(nHl = LuN(m > Lx@-1) (5.11)

1<i<n, t>t
If we select the maximum possible L. allowed by inequality (5. 7), then from (5. 11)

we obtain , .
8 > min [C, () &, C* (k) 5] (5.12)
C, ('k) = 1/2 k (1 — u) (e"" — 1)”13(‘2'"-1), C.* (k) _ u(ﬁ"—l)

As x we can take any number from interval (5. 3), for example, the %, from (5. 10), We
obtain explicit expressions for X, Cn (k) and C,* (k) by substituting relations (5. 8),
(4. 9),(4. 14) and (2. 5) into formulas (5. 10) and (5. 12). In particular, when the capabi-
lities of the pursuers approach the capability of the evading point (k — 1), we find
according to the formulas indicated above

%o = 2hetX, C,, (k) = 0.5¢ Ax@"1)
Co* (k) = %", A=k —A)%—>oc0, k-t

We note that the evasion strategy proposed in Sect. 3 for point E, as well as the bounds
(5.3) and (5. 7) on the choice of parameters L and %,do not depend upon the number

n of pursuers,
Translated by N, H, C,
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We give criteria for escape and /-escape in nonlinear differential games. The
paper is closely related to the investigations in [1— 8].

1, Let the motion of a vector z in an n-dimensional Euclidean space R be des-
cribed by the vector differential equation

dz/dt =f(t, z, u, v) (L.1)

where £>0; u & P and v & Q are control parameters varying on sets P and Q
compact in R . Regarding the right-hand side of Eq. (1. 1) we assume that:
a) f(t, z, u, v) is continuous in (¢, z, u, v) = X= [0, + ©)xX RXPXQ;
b) the inequality

lf(t1 %, U, v)_’f(ta 23, uiv)l<ktlzl—zﬂl

where k,is a constant depending only on ¢ , is satisfied for any u & P,v & Q and
for t>0a 23, ZQERv |t'+lzl|+lza'<0i

c) a constant B exists such that

l(zf (tv 2, U, 7)))' <B (1 + |z|2)
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holdsforall ¢ > 0,z R, u s P, v Q;
d) the set f (¢, z, P, v) isconvexforany t >0, z& R, v Q.

In addition, let a certain linear subspace M be given in R . We say that differential
game (1. 1) is described by all the data listed above.

The measurable vector functions u* = {u (), £ > 0} and v* = {v (8), ¢t > 0},
satisfying the inclusions u (f) & P and » () & Q for each ¢ are called the controls
of players U and V', respectively. The aim of player U is to lead point z onto set M ;
player V tries to prevent this, The game terminates when vector z first hits onto M.
We note that when conditions (a) — (d) are satisfied forany z = R, 0 <t T
and for any pair of controls u* and v* defined on [t’, T, there exists a unique [2]solu~
tion (in the sense of Carathéodory) z (), ¥ <C ¢ <C T of Eq. (1. 1) with the initial
condition z (1) = 2z, (i.e. a vector function z (¢) , absolutely continuous on[t’, T1,
satisfying Eq. (1. 1) almost everywhere), Function z (f) is called a motion and is deno-
ted 2 (t) = z (¢ v, zo, u*, v*).

By m we denote the operator of orthogonal projection from R onto a subspace I (we
assume that dim Z = v > 2) which is the orthogonal complement to M in R ; by
M (%, z) we denote function 1 (¢, z) = (1 + 2 + [z]®)%. Weset N =1 (¢f) =
n (¢, z (£)) for any motion z (£) . By D (r), r > O we denote the collection of all
pairs (¢, z) for which n (¢, z) <7, by D (r, e). r > 1, € > 0, we denote the
collection of all pairs (¢, z) & D (r) such that [nz] << ® and by X (r) we denote the
set D(r) X P x Q.

By virtue of Eq. (1. 1), for the derivative of the function 1 we have (see condition (c))
'l = 1t + (22 |< |£] + B (4 + |21 <(B + 1) 2, so that In’| <a (1 +
1%), a = (B + 1) / 2, and, consequently [5], the estimate

O(F(ne) —7) =1 (Mg, 7)<1()< P2 (My, V=D (Fln,) + (1.2
T)v 0<T<e*

F(r)=5%—tgr, 0 r< oo} (D(s)=tgas, I<s<a=mn/2a
e,,-_—min{“"—z("ﬁ,zr(i)}

holds for any motion z (f) = z (¢; ¢,, z,, u*, v*) (here and everywhere subsequently
T=t—t,and Ny =N (L, z,)) .

Let us consider the problem of evasion from contact (the escape problem) [1, 83—5]
for differential game (1. 1),

2. Let A = A4 (w) & R be a differentiable vector function of the vector variable
w & R and let b be an arbitrary vector from R. By the product (04 / dw-b) we
mean a vector from R, each of whose components is the scalar product of the gradient
of the corresponding component of the vector function A by the vector 4., We consider
sequences of functions &; (¢, z) and g; (¢, 2z, u, v) satisfying the following relations:

nf (¢ z,u, v) =hy (¢, 2) + & (¢, 2, u, v) (2.1
h, (t, oh, (t, .
2 ia(: Z) + ( 1;; Z) 'f(ty 2, u, U)) = hi+1 (t’ Z) + i1 (tv z,u, U), l>i (2' 2)

Note that for { = 0 relation (2. 1) can be given the form of (2. 2) by setting
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ho (t, z2) = mz, g (¢ 2, u, ¥)=0 (2.3)

We assume that the following condition is fulfilled for game (1. 1) (cf [4]).

Condition 1. A positive integer & , continuously-differentiable vector functions
hi (¢, z),vector functions g; (¢, z, u, v), i = 1,. .., k,and continuous nonnegative
scalar functions m; (¢, z, u, v), i = 1, ..., k — 1 exist (all the functions and their
properties hold on set X) such that for any r >> 1 we can find 9 (r) > 0 and & (r) >
0 such that relations (2. 1) — (2. 3) and the inequality

lg: (¢, 2, u, v)| < | mz i my; (¢, 2z, u, V)
are fulfilled for all pairs (¢, z) & D (r, ¢ (r)), for all u & P; v & Q and for all
i =0, .. k—1,and the inclusion

kly@r) S ngk(t,z,u,Q), t2eED(r), sem (2.9)

holds as well (S is the unit closed sphere in L) ,

Note 1. The continuity of the functions g; (¢, z, u, ») on X follows from rela-
tions (2. 1) — (2. 3) and from the continuity of the derivatives of the functions %; (¢, z) .
It is easy to verify as well (see the proof of Note 2) that the functions & (r) >> 0 and
v (r) > 0 in Condition 1 can be chosen continuous and strictly monotonically decrea-
sing with respect to 7 > 1. Assuming that such a choice has been made, we denote the
function inverse to & (r) by E (s), & << s < & (8, = ¢ (1), & = lim, .1 & (7).

Lemma 1, Forevery r > 1 and for every vector dy, . . ., dy & L, a vector
we L, |w| <Y,y (r) exists sheh that

(2.4)

I wtk — é d;tt

i==0

=>4p(r)tF, 0T (2.6)

p(r) =min {1, y (r)/ (128 (k + 2)%)}

Lemma 1 is a direct corollary of assertions (A) and (B) in Sect. 4 of [1].

For a fixed r >> 1 we denote the modulus of continuity of the function gy (¢, z, u,
v) onset X (r) by o (r; 6). Obviously, o (ry; 8;) << @ (re; 8s) for ry <73 and
8, < 8,. We set Ok, (t, z) dk, (t, 2)

I:% + ( kaz '/(t, %, U, U))

k—1
|7t 2,u,0) |+ D) mi(t,z,u, u)} 47

(the sup here is taken over the set X (r)) =
H@) =A@, @+ FO)) +1, p( ) =oHE@); 8 (2.8

The functions A (r) and H (r) are continuous and increase strictly monotonically in
r>1.Let A(r), r >> 1 be such that A (r) >> 0 and

p(n A <<e(n), r=>1 (2.9

Note 2. The function A () satisfying (2. 9) can be chosen (from now on we take
this choice as made) continuous and decreasing strictly monotonically in r > 1.

In fact,let A, >0, n =1, 2,. .. be such that u (n; A,)<C p (n). Setting
Sy =min {A;, ..., A}/2% n=1, 2,..., wehave §, < A, and the se-
quence of §,, >> O decreases strictly monotonically. Setting

Mr) = S“P{ + (2.7)
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A(r) =08pu + (r—n) Bpea —8,4), n<r<n+1i,n=12,...
we have A (1) C Opyg, R KPR+ 1, so that
BOAM)<p(+ 15 8u) <p(n+1)<p()

(we have used the monotonic decreasing of p (r)). We set

() = minfe (), A¢),p (), 1), ) = min (F (£ (2E2)) — (210

1<er

—F ()

8 (r) = min {F (1), Y, (@—F (1), b(") / H (1), ¢ (1), p (r) /(351X

X H®2 (r))}

) =b@O@) o), n()=n (®Ys CF ) + a))) <M ()
The functions 0 (), n (r) and b (r) decrease monotonically in 7 > 4 and are posi-

tive and continuous. By N we denote the collection of all pairs (¢, 2), t >0, z &

R, such that Izl < n (n (2, 2) (2.11)

3. Lemma 2. Forevery (f,, z.) & N the inequality |nz (s)| << & (n (),
s &1, is satisfied for any motion 2 () = z (t; £, z,, u*, »*) on the interval
I, = [t,, t, + 6 (n,)] (we retain this notation in what follows).

In fact (here and later f(s) = f (s, z(s), u(s), v (s)) and g;(s) = &: (s, 2 (3),
u@s),v),i=1,..., k

Z(t) — 2, = )f/(s)ds, nz(t) = nz, + j‘n/(s)ds 6.0
. te

So that by virtue of (2. 7),(2.8) and (1.2)

t
|z (6| <[ mzy |+ [ A ) ds < [z, | + A (@ (F (1) + DTS (3.2)
ty
[nz*|—|-1:H(n*), tel,
12(8) — 24 | <A@ (M NT<STH (M) — 1), tel,

From the first inequality in (3. 2) we have (see (2. 10) and (2. 11))

Iz ()] <Yae (M) + b (ny) < Vo (e () +)<E(@3(Mer TN
e(n (), (€

The last inequality follows from the monotony of e (r) and from inequality (1, 2),while
the penultimate one is a consequence of the inequality

T+ F(n,) <F(E (M) + &)

following from (2. 10) as well as of the monotony of the functions @ (s) and e (r).
The lemma is proved.
Lemma 3, When Condition 1 is satisfied, the equality

nz@)=T@)+m@+7I@)+r(0) (3.3)
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holds for any 0 < ¢, < ¢ and for any motion z (f) = z (¢; t,, z,, u*, v*)such that
fnz () <Ce(n (S)), ty < s t. Here

(=9
1o~ T B e 20 — W2y, u (8,0 (5) ds, 9

-

k—1 ! -1
m(t) = ZS‘L 8)1)! £ (s)ds
t

=1 t,

h; (t 1Zg) :
T(r)_nz*-}-z S h<t)=§ si)llp(s)ds (3.5)
i=1 ty
t-—- oh, (s,z(s)) oh (s z (s))
e +( 1)+ 3.9

[gk (8) — 8k (ttv %2y — JIZ*, u (S), v (S))]

Lemma 3 follows from the second equality in (3. 1) by a k-fold integration by parts
with due regard to relations (2. 1) — (2. 3).

Now let (2,, 2,) E N, t < I, and z (t) = 2z (¢; Ly, z4, U*, v*) be an arbitrary
motion (we recall that by notation 2 (t4) = z,). From Lemma 2 it follows that Lem-
ma 3, together with (3, 3) — (8. 6), is valid for z (£) . Let us estimate the second and the
fourth terms in (3. 3). By virtue of (2. 4),(2. 7), (2. 8),(1. 2) and (3. 2) we have

k-1t (t — i1
Im(t)|< Z S ;,__(-i_—_i)TI“Z () [F+1-im; (s) ds < 3.7
=
H(ny) 3 v (|nzy |+ vH (ny))e1-t, t €1,
i=1

(here my (s) =my (s, z(s), u (s), v(s)), i =1,..., kK —1). For p (s)we have
the estimate
TEEIP@I<AM @) + 0 (H 0w+ 1206) — 20l + | 12, ]) (3.9
(see (2.8) and the properties of ® (r; §) ), because
N (fe 2 — 72) <N < H M), 1) <DV (Flng) +a)) <
H (n,)
s — t)* + 12 (s) — (24 — wza) P11 7 + |2 () — 24| + mz, ]
From (3. 1) follows (see (3.2) ) T + 12 (s) — z, | << ©H (n,); therefore, finally
(see (2. 9) and (2. 10)):
[h ()] < T H(ny) + v1 (ny), [7ze] + tH (n,) <t H(n,) + (3.9
P (M), tel
(here we have used the inequalities |nz, | <4 A (n,) and ©H (n,) << 0 (n,) ¥
H (ny) < Y4 A (ny))-

4. We introduce the notation of a special control of player V. Let (f4, 2x) E N
and let w & Y/, v (Ma) S. Then, for every control u* = {u (s), s > t4} a control
v,* = {vy () = V (u(s), w)}, called special, exists (we drop the indices showing
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dependency on £, and z,) such that
41 (t*’ Zy — N2y, U (S), Uy (S)) = - k!w’ s>y (4.1

The function V (u, w) can be chosen [3]so that the function ¥y (8), s > ¢, is mea-
surable for any measurable u* and for fixed w. Multiplying (4.1) by (¢ — s)** and
integrating from £, to /, we obtain
t
1y == ¢ o130 (4.2)
()—— (k—_i)—lgk(*,z*—nz*,u(s),vw(s))ds=—wt, T2 (4.
6. Let us describe the active behavior of player V. Let game (1. 1) commence at
the point (¢, z4) & N. Then,by virtue of Lemma 1, we can find vector

W=w(ty, 2) EYay(My) S

for the polynomial T (1) given by formula (3, 5),such that [T (v) — wi*| >

4p (ny) T, 0 << v < 0 (). We fix the vector w thus found and we direct player V
to apply the special control v (s) = v,, (s) (see Sect.4) on interval I, . Then from
Lemma 3, the estimate (3.7) and (3. 9) and the equalities (3. 3) — (3. 6) and (4. 2) we
have k—1

[mz(8)] > 4o (ng) ™ — D2 TH (n,) (|72, |+ TH )F2— (5.1

i=1

T (VH (M) + p (M4))
foo te=1,.

From formula (3. 1) follows (see (3.2))
[nz () > |nzyl —TH (ny), tel,

Therefore, for all v & [0, 6 (n,)] N [0, [nz,]/ (2H (n,))] we have

|mz (8)] > Yol nzy| > Vol nzy[* (5.2)

Formula (5. 1) yields k—1 k+1-i

|z @) [>3p () —vH ()t + 3 (Eel+Hew)  ]> ¢
i=t1

k—1
3p (m,) T*—{v* 1 H () [1 + D GH (m))"*l-*] >

i=1

k . o+ + k Inz‘ Ik
v [3p (ny) — T3 (H ()21 > 20 () ¥ > 0 () o

for those same T & [0, 6 (n,)] for which t > |nz, |/ (2H (1)) (see (2,10)). Since
by virtue of (1.2) ) a— F(ny) — 3F(n2) —o
FN@O)SFMy)—t>FM)— —5—>—75— t€l

and, consequently, oF ¢
F(n*)g_(ng(}Lﬁ_*-av tEI* (5-4)

then
|72 @) | >q (@) |nz, [", te1, (5.5)

q(r)=min{—;—,p(d>(21(-’3)i‘))/[2H(cp(.\)]k} G
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together with (5. 2) and (5. 3) yield the monotony of the functions p (r) and H (r) .
According to the penultimate inequality in (5. 3), we have (see (5.4))

Iz (£)1 > 20 (ny) (6 ()* > n (n (%)) .7

at the instant &* = £, + 0 (n,) (i.e. when T = 0 (1)) ; therefore, the point (¢*,
z (¢*)) does not belong to N.

6, Theorem on evasion from contact. Evasion from contact is possible
if Condition 1 is fulfilled for the differential game (1. 1). Here, for every initial point
(o, 2o) of the game, ¢, > 0, z, & R \ M, a suitable choice of the escape control
v* = {v(t), ¢t > %o} can ensure the following estimate for the quantity ¥ (f) =
[nz (£)], t> ¢

S (@, t>to for (to.z0) & NV
@) > { EC) 3ME), 0<t—ta<<OM(torz0) for (b )N (6D
S (n (), t > to -~ 0 (1 (fo, 20)) for (to,20) & N

Here § (r) and 0(r), r>1ar monotonically-decreasing continuous positive func-
tions of their argument, depending only on game (1. 1) and not depending either on the
initial values of the players' phase coordinates or on the run of the game, NV is a cer-
tain fixed closed domain, depending only on game (1. 1), in the space [0, + oo0) X R,
whose interior contains the set [0, -+ c0) X M.

Proof. We fix set N by formula (2, 11). Then, no matter how player U/ constructs
his own control u* = {u (), £ >> t,} , we propose that player V conducts the escape
(recall that [1] at each instant ¢ player V knows z (s) and % (s), s < ¢) inductively
by cycles so that each m-th cycle (m > 1) consists of two intervals; (1) the interval
of passive escape of duration T,,,on which player ¥ applies the control v* = vy* =
{v ()= v,}, where once and forever v, is a fixed vector from (, and (2) the interval
of active escape, following it, of duration 0,,, on which player V applies the special
escape control v;m (see Sect. 5 for the choice of wy,). The duration of each interval
is determined inductively in the following way: T, = 0 if (#, zo) & N and 17, >0
is the smallest positive root of the equation |nz (f) + 7,)| = n (v (¢, + T1,)), where
z(t) = z(t; to, zo, U¥, V¥ if (to, 2o) & N: 0, = 0 (v (£, + 7)) see (2.10));
here w, = w (¢, + Ty, z (fp + Ty)) on the first active part.

For m > 2 the quantity T, > O is the smallest positive root (see (5. 7)) of the

equation Mz (Tm_y + tw)] =0 (0 (T + Tm))

where

1
Ti =1+ Z (Tj + eJ')1 z (t) =2 (t; Tm—l’ 2 (Tm—l)v U*v UO*)

i=1

The quantity 8,, > O is given by the formula 6, =6 (n (T 4)), where Ty =

ma+ T 5 Wn=w (Tn, z(Tm)) and z(8) =z (& Tm—l, z (Tmr), u*,
vwm) on the m-th active part,

Let us obtain estimate (6, 1), We set

()= min{n(r), q(r)n"((l)(%ﬁ—%)—ﬁ)) (6.2)

Then on the passive part (see (2. 11) and (5. 7)) the estimate follows from the definition
of set N E(0)>n (1) >8m @) (6.)
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On the m-th active part (m > 2),by virtue of (5. 5),(5.4) and (6. 2) we have

E() > [E(Tmdlgm (@) = 4 (Tm))g( (1) >8(n(8) (6.9

On the first active part the estimate (6. 1) follows from (5.5) if T, = 0 and coincides
with (6.4) if T, > 0.

Let us now show that T, = +-00 as m — -+-o0o. We assume the contrary. If I'n—>
T, then the series 8, + 68, + . . . <{ T — ¢, converges, so that 8; — 0, as j—
-+ oo, Hence, by virtue of the monotony of the function @ (r) > (0 we have q (T,,._l) -
+o00. Since T, — To,it follows that |z (Tm_1)| — 400 as Ty, — T However,
the latter contradicts condition (c) of Sect. 1. The theorem is proved.

7. Condition 2, The numbers Ty > 0 and 8 > 0 and the function r (2),
continuous on [0, 26] and positive on (0, 28], depending only on game (1. 1), exist
such that for any ?y >> To and 2y & R we can construct a Volterra operator [1] S;=
St (o, 2o, u*) defined on the interval I (f5) = t#p + 20] and associating with the
initial value (%o, Zo) and with the control u* = {u (t), t & I (t,)}the control

= {v(t) = S (to, 20, u*), tE I (L)} (1.2)
such that for every control u* the inequality
iz () >r(t—t), tE1E) (7.2)

is fulfilled for the motion z (£) = 2 (%; %o, 2o, u*, ¥*) (¥* is given by formula(7.1)).
Condition 3, Constants K >0 and D >> 0 exist such that

|f (t1 z]_s u; vl) - f (t, 22, u, 7)2)' < Kl Zl - ZQI + D (7'3)

forall t > 1y, 2,2 R, ues P, v, v, = Q.

Theorem on [l-escape. Let Conditions 2 and 3 be satisfied for game (1. 1).
Then, for every %y 2> To and zg & R, [-evasion from contact [6] is possible for a
game starting from the point (¢, Zo),where

Ks
. —1
l =sg(1)ne}]1, (5) >0, p(s)=max{r(s), p(s)}, p(s)=r(®O+s)—D £ z

Proof. Let ?y >> Tpand zy = z (¢,). Weset B, = ¢ + nb, n=0,1,. ...
For an escape beginning at instant ¢, from point z, we propose to construct inductively
on each of the intervals I, = [B,, Bnsy), » = 0, 1, 2,. .. the control v = v ()

b the 1
T = (o0 (1) = St Brr Zny tn®)s L= Lo}, un® = {u(0), t = 1) (19

where z, = z (f,) is the value of vector z (£) at instant f§,,. Then, the inequality
[nz ()] = 0z (t; By Zn» Un*s V) >T(E— Bn)y Bn S ESPan

is valid by virtue of (7. 2). For n > 1 we have the representation
7z (f) = 2, (1) + ya (8), 1€
2o () =z (& Br-1r Zn-1r Uno*s Tno*)s  Uno* = {u(#), Bna <
< ﬁn+1}
* = {00 () = St Br-1y Zn-1, Uno®)s Pna < < Ban}

Zn (t) = Z(t; ﬂn’ Zn, un ? Un*) — 2z (t7 ﬂn—lv zn—]v u'no £ vno*)
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Yn (t) = NIp (t)
Since z, (B,) = 0, by virtue of (3. 1) and (7. 3)

4
[2@)—2. () [ = |2z ()| = Q (/1 (5, 2(5), 1 (5), vn () — 1 (55 Zn (), u(s)

B
<§ &|26) = 2091+ Dyds

BTL

Hence, by virtue of the Gronwall inequality [7]

len () <D (7 — 1)/ K = h(t —Ba)y *E1n
So that |y, (£)| << |z, (8)} <C A (¢ — P,) and, hence (see Condition 2)

Inz ()] > | nzo ()] — lyn (O] > 1 (¢ — Pa-y) — b (£ —Bo) = (7.9
p(t’_'ﬁn)’ tEIn

The theorem's assertion follows from formulas (7.4) and (7. 5). In conclusion we merely
note that since 7 (s) >0, 0 << s < @ and p (0) = r(6) > 0, we have p (s) > 0,
0 < s << 0, while by virtue of the continuity of p (s) the last inequality implies the
positiveness of /.

Pontriagin [1] and Nikol'skii [8] showed that Conditions 2 and 3 are fulfilied when
their escape conditions are fulfilled,

n

Uno (8))) ds

8, Let us consider a problem with a small parameter, We assume additionally that
the right-hand side of Eq. (1. 1) can be represented as

f(t 2z, u, v) = F (2, u,v) + e9 (¢, z, u, v) (8.1)

where the function F (2, z, u, v) satisfies conditions (a) — (c) of Sect. 1 and & & [0,
1] is a nonnegative parameter. We introduce the dependence of the right-hand side of
(1.1) on parameter & into the notation. For a given & & [0, 1] we denote the game
(1.1) by (1.1),, and the motions of this game by z(f; &) =z (t; ¢y, zo, U*, v*, €).

Condition 4. When & = 0 the game (1.1), satisfies Conditicns 2 and 3, and
in Condition 3

I (8, 24, u, ©) — f (28, 20, u, V)| = |F (2, 25, u, v) — F (¢, 25, u, 9) | < (8.2)
K|Zl—zz|

forall t > 14,2, =R, uesP,ve (.
Condition 5. The function ¢ (¢, z, u, v) is uniformly bounded on [t,, + oco) X

R x P X Q; namely I (¢, z, u, )] <1 (8.9

Theorem on escape in a small-parameter problem. Let Conditions
4 and 5 be satisfied for game (1. 1). Then for any initial point (fy, Z4) of game (1.1),
at which ¢, > To and z, € M,there exists &, = & (¢,, z,) >> 0 such that eva-
sion from contact is possible in the game (1.1), with initial condition z (£,; &) = 2z,
forevery e < [0, e,].

Proof. We set
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re = mi \O, I‘ —
0 0<sl<20r(3)/ 1(r) il(lrl))lF(t,z,u,v),+1

T (r) = Ty(retB+)
We fix (see @ in Condition 2)

—mi [nz, | 1 Kro (8.4)
Ty == mm{i, 8, 57 )’ xln (1 + 2—0)}
re= min r 0; ey = 4) = mi i LS AL
= I 79> 0 e =6y, 5) = min o )

For ¢ & [0, 1] from (3. 1) (as in (3.2)) we have (by virtue of the inequality |n°| <
(B + 1) n obtained in Sect. 1) the inequality
Inz (¢ €)| > |nzye] — 7T (n,), O0<t=t—t,<1

for any motion z (t; &) = z (t; ty, 24, u*, v*; €) » So that

[nz (¢ €)} > Yol mz,], O0<t<T, (8.5)
Now let € be an arbitrary fixed number from the segment [0, e,]. Weset §, =
ty +n0, n =0, 1, 2, .. For an escape in game (1.1),starting at instant 7,
from point z,, we propose to construct inductively on each of the intervals I, = [B,,
Brua)s m = 0,1, ... the control ¥ = v () by the rule
0¥ = {v, (t) = S; Bn, 20, un*), t=1,} (8.6)
zn =z (Bas ©), uy* = {u (1), te In}

where operator S, is constructed (see Condition 2) for the game (1.1),.
For n > 1 we have the representation

nz (8 &) = azy () + 2o () + ya (1), tE1n 8.7

Zn (t) = Z(t; ﬁn—l’ Zp-1» uno*a vno*; O)v uno* = {u (t)v ﬁn—l <
4 < ﬂnﬂ}
vno* = {vno (t) = St (ﬁn—h Zp-1y uno*)v Bn—l < t< ﬁnﬂ}

Zn () = qen (), Ya () = 5hs (), An(f) =z, ( 0) — 2, (¥)
€n (8) = 2 (&; Bry 2n, Un™, 0% 8) — 2, (£ 0) = z (£ &) — 2, (t; 0)
zn (8 0) = 2z (5 Bn,y 20, Un™®, vp*; 0)

Let us estimate each of the summands in (8. 7). By virtue of condition (7. 2)

iz, ()] > 7 (t — Bn-a)y 1EI n>t (8.8)
Since g, (B,) = 0,
t t
en®) = { Z280ds= ( (65, 26, 0, w6, val) —Fls, 2a(s: 0)
B g,
u(s), vn(s))ds

So that
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i 1
e <e §1o(s z6s0), w@.va@)]ds+ § |F(s,2(550),
£, b
u(8), v (8) — F (8, 2, (s; 0), 1 (s), vn (s)) | ds
Hence, by virtue of Conditions 4 and 5

leat)| < (¢ —Boe + BS K [e, ()] ds

n

So that by Gronwall's lemma
Iz, ()] < len () << e (E— Bn), 1€ n=0,1,.. (8.9
c(s) = (X5 — 1)/ K

For the quantity A, (f) we have A, (B,) = z (Bn; &) — 24— (Ba; 0). Hence by

virtue of (8. 9) A (Bn)| < &c, ©¢=c(®), n=1,2 .. (8.10)

Therefore, according to Condition 3
t

[An ()] <ec+ S | F (8, 3,(5;0), u(8),vn(8)) — F (S, 2,(5), u(s)

n
t

bao (8)) | ds e+ § (K| 4n ()| + D) ds
Bn
Hence by Gronwall's lemma

|4n O <) 80(0)| < (0 + 2) &P — F <eceko + Dot — B} (8,11

te[ﬂ
Combining (8.7)— (8.9) and (8. 11), for 7 > 1 we obtain
lnz (t; €| >r(t—Pn+ 0) — e (ce¥® + c (¢t — Ba)) — (8.12)
De(t —Bp)=p(t —Brn;e), (€
Here (s o) =7 (8+8) — De(s) — e (e (s) + k) > py () (8.19)

se [0, 0]; py (5) = p (s; &4)

For n > 0 we have as well the representation (see (8. 7) for the notation)
nz (t; &) = nz, (& 0) + 2, (), tE€i, (8.14)
Since by virtue of Conditions 2 and 4 and also of inequality (8. 9)
Inz, (& O) =71 (t—Bn); |l < ec(t—Pn), €L (8,15
from (8. 14) we have (with Py () =1 (8) — g,c(s), 0<Cs<C0)
|z (t; €)|>7(t—Ba) —ec (£ — Br) > py (£ — Bn), (€L, (8.10)
By virtue of the definition of & (,, z,) ,from formula (8, 16) we have
Iz (4 8)| > ry — 24c (8) > 1, /2 (8.17)

on the interval £ & [¢, -+ Ty, f1].So that in correspondence with (8. 5)
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Inz (¢ €)| > Y, min {r,, lnz,|} >0, tel
Setting W, (s) = max {p, (s), ps (s)} ,from (8. 12),(8. 13) and (8. 16) we have

lnz (8 )| > py (£ — Bn)y 1€ n=1,2,... (8.18)

Let us show that Py () > 0 on [0, 6]. In fact (see (8.17)), P (8) => T4 / 2 > 0,
Ty << S <C 0. By virtue of the definition of t, (see (8.4)) we have

Pe ) >r9g —Dec (1) —euc (1 -+ K% >ry/2 —e, (K0 —1)/ K

on the interval [0, t,]. Hence, according to the definition of e, we have p, (s) >
ro/ 4 >0, s& [0, 7,]. The positiveness of 4 (s) is proved.
Since W, () is continuous, we have that I/, = min p, (s) > 0, so that formulas

(8.16) and (8, 18) guarantee /-escape in problem (1. 1), for & = [0, 8*] and z (fy;
e) = Zy.
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We explain the character of simplifications which can be carried out in the Ha-
miltonian function of a nonresonant system using the formal, noncanonical trans-
formations. We show the symmetries of such systems, which are not generated
by their first integrals, Using a Hamiltonian system with two degrees of freedom
we show that the noncanonical transformations retaining its normal form but with



