
20 F.L. C~:{: r ' l ,  L ~  r ,,:o 

from (5 .5) .  
6 = min~,t EPi ~ iN(m+1 = i x  N(n) ~ LxC' - I )  (5.11) 

l < i < n ,  t~to  

If we select the maximum possible L allowed by inequality (5.7), then from (5.11) 
we obtain 

6 > min  [Cn (,~) e, Cn* (k) 60] (5.12) 

C,, (,k) = 1/2 k (t  - -  u) (e x" - -  i ) - l u  (2n-1), Cn* (k) = x (2n-l) 

As ~¢ we can take any number from interval (5.3), for example, the u0 from (5.10). We 
obtain explicit expressions for ge, Cn (k) and Cn* (k) by substituting relations (5.8), 
(4. 9),(4. 14) and (2.5) into formulas (5.10) and (5.12). In particular, when the capabi- 
lities of the pursuers approach the capability of the evading point (k ~ i ) ,  we find 
according to the formula, indicated above 

×o ~ 2 ~  -4"x, C.  (k) . ~  0.5e-"XU(o2"-t) 

C . *  (k) ~ x ~ " - ' ,  ~ = k (I  - -  k W v ,  - , .  oo ,  k --, i 

We note that the evasion strategy proposed in Sect. 3 for point E ,  as well as the bounds 
(5.3) and (5.7) on the choice of parameters L and ~¢, do not depend upon the number 
n of pursuers. 

Tramlated by N. H. C. 
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We give criteria for escape and / -escape in nonlinear differential games. The 
paper is closely related to the investigations in [ 1 -  8]. 

1, Let the motion of a vector z in an n-dimensional Euclidean space R be des- 
cribed by the vector differential equation 

dz / dt = l ( t, z, u, v) (1.1) 

where t ~ 0; u ~ P and v ~ Q are control parameters varying on sets p and Q 
compact in R . Regarding the right-hand side of Eq. (1. 1) we assume that: 

a) ] ( t ,  z, u, v) is continuous in (t, z, u, v) ~ X =  [0, + o o ) ×  B x P x Q ;  
b) the inequality 

I t ( t ,  ,~, u, v) - -  l ( t, z,,  u, O l <  k, I  z~ - -  z~ I 

where k .  is a constant depending only on e ,  is satisfied for any u ~ P,  v ~ Q and 

for t > 0 ,  Zl, 7 . , 2 ~ / {  , I t l + l z ,  l + l z ,  l < c  ; 
c) a constant B exists such that 

I ( z . / ( t ,  z, u, v))l ~ B (I + I z I') 
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holds for a l l t ~ O ,  z ~ R ,  u ~ P ,  v E Q ;  
d) the set / (t,  z, P ,  v) is convex for any t > O, z ~ B ,  v E Q. 

In addition, let a certain linear subspace M be given in R .  We say that differential 
game (1. 1) is described by aU the data listed above. 

The measurable vector functions u* ---- {u (t), t ~ 0} and v* ~- {v (t), t ~ 0}, 
satisfying the inclusions u (t) ~ P and v (t) ~ Q for each l are called the controls 
of players U and V,  respectively. The aim of player U is to lead point z onto set M ;  
player V tries to prevent this. The game terminates when vector z first hits onto M.  
We note that when conditions (a)--  (d) are satisfied for any z0 ~ / { i  0 -~< "c' ~< T 
and for any pair of controls u* and v* defined on iT', T], there exists a unique [2]solu- 
tion (in the sense of Carath~odory) z (t), "~' ~ t ~ T of Eq. (1. 1) with the initial 
condition z (T') = zo (i. e. a vector function z (t) , absolutely continuous on iT', T], 
satisfying Eq. (1. 1) almost everywhere). Function z (t) is called a motion and is deno- 
ted z ( t ) =  z (t; T', z0, u*, v*). 

By g we denote the operator of orthogonal projection from R onto a subspace L (we 
assume that d im L = v > / 2 )  which is the orthogonal complement to M in R ; by 
~1 (t, z) we denote function 1] (t, z) = (t  + t '  + Izl')v,. we set ~ ----- n (t) _= 
~1 (t, z (t)) for any motion z (t) . By D (r), r > 0 we denote the collection of an 
pairs (t, z) for which ~i (t, z) ~ r, by D (r, 8~. r "~ t ,  e > 0 ,we denote the 
collection of all pairs (t, z) ~ D (r) such that Iml ~< 8 and by X (r) we denotethe 
set D(r)  X p × Q. 

By virtue of Eq. (1. 1), for the derivative of the function 1] we have (see condition (c)) 
Inn'l = It ÷(z .z ) ' l~<l t l  ÷ B (i  ÷ IzlD ~<(B + t)  n ' ,  so that In'l ~ a  (1 + 
~i2), a = (B + 1) / 2, and,consequently [5],the estimate 

~), 0 < ~ < O ,  

F (r) aretg r 
= a , O . . < r < + o o ;  q) (s) = tg as, O < s < a = r t / 2 a  

0* "--- min  { a - F (%-)2 , F ( t ) }  

holds for any motion z (t) ---- z (t; t , ,  z , ,  u*,  v*) (here and everywhere subsequently 
r = t - -  t ,  and ~i, = ~1 ( t , ,  z , ) )  . 

Let us consider the problem of evasion from contact (the escape problem) [1, 3--5] 
for differential game (1. 1). 

2. Let A = A (w) ~ R be a differentiable vector function of the vector variable 
w E / {  and let b he an arbitrary vector from R.  By the product (024 / 0w. b) we 
mean a vector from R,  each of whose components is the scalar product of the gradient 
of the corresponding component of the vector function A by the vector b. We consider 
sequences of functions hi (t, z) and gi (t, z, u, v) satisfying the following relations: 

~1 (t,  z, u,  v) = h~ (t, z) + g~ (t,  z, u ,  v) (2 .1)  

Oh~ (t, ~) (Oh~ (t, ,.) ) 
Ot -{- \ ~-~ . /( t ,  Z, it, V), = hi+x (t, z) ÷ gt+l (t, z, it, v), i >i t (2.2) 

Note that for i = 0 relation (2. 1) can be given the form of (2.2) by setting 



h 0( t ,  z) ----- nz, g0( t ,  z, u, v ) ~ 0  (2.3) 

we assume that the following condition is fulfilled for game (1.1) (cf [4]).  
C o n d i t i o n  1. A positive integer k ,continuously-differentiable vector functions 

h~ (t, z) ,vector functions gi (t, z, u, v), i ~ 1 , . . . ,  k ,  and continuous nonnegative 
scalar functions m i (t, z, u, v), i = i ,  . . . ,  k - -  i exist (all the functions and their 
properties hold on set X) such that for an~ r ~ t we can find ~ (r) ~ 0 and e (r) 
0 such that relations (2.1) -- (2.3) and the inequality 

Ig~ (t, z, u, v)l < I~z ]~+1-i m~ (t, z, u, v) (2 .4)  
are fulfilled for all pairs (t, z) ~ D  (r, e ( r ) ) ,  for all u ~  P~ v ~ Q  and for all 
i ---- 0 , . . . ,  k - -  l , and the inclusion 

k l y ( r ) S c  ~ g~(t,z,u,Q), ( t ,z)~D(r) ,  z ~ M  (2.5) 
u ~ P  

holds as well (S is the unit closed sphere in L ) .  
N o t e  1. The continuity of the functions g~ (t, z, u, v) on X follows from rela- 

tions (2.1) -- (2.3) and from the ,continuity of the derivatives of the functions ht (t, z) . 
It is easy to verify as well (see the proof of Note 2) that the functions e (r) > 0 and 
7 (r) > 0 in Condition 1 can be chosen continuous and strictly monotonically decrea- 
sing with respect to r ~ I.  Assuming that such a choice has been made, we denote the 
function inverse to e (r) by E (s), e 1 < s ~< e2 (% = e (1), e 1 = lim~__,+~ e ( r ) ) .  

L e m m a  1. Forevery r > l  and for every vector d 0 , . . . ,  d R ~ L ,  avector  
w ~ L, ]w [ -~< 1/~ 7 (r) exists shch that 

k 

Jwvk- -  E d i T i ] > 4 p ( r )  T ~, 0 , . ~ v < l  (2.6) 
i = 0  

p (r) = rain {i ,  ? (r) / ( i28 (k q- 2)2)} 

Lemma 1 is a direct corollary of assertions (A) and (B) in Sect. 4 of [1]. 
For a fixed r ~ i we denote the modulus of continuity of the function gk (t, z, u, 

v) on set X ( r )  by c0(r; 5 ) .  Obviously, c0(q ;  61) ~ o)(r~; 52) for r 1 ~  r~ and 
~i, .~  5~. We set 

k (r) = sup O--'---'i "---+ \'----'g'~--z ./(t ,z,u,v) -4- (2.7) 

k--1  

IS(t,z,u,~')l + Z m~(t,z,u,v)} q-r 
i = l  

(the sup here is taken over the set X (r)) 

H ( r )  = ~,((1)(~/, (ct-~- F ( r ) ) ) )  -4- t ,  ix(r;  8) = o ) ( H ( r ) ;  ~t) (2.8) 
The functions ~, (r) and H(r)are continuous and increase strictly monotonically in 

r >~ t .  Let A (r), r ~ t be such that A (r) > 0 and 

~t(r; a(r))~<p(r), r>ll (2.9) 

N ote 2. The function A (r) satisfying (2.9) can be chosen (from now on we take 
this choice as made) continuous and decreasing strictly monotonically in r ~ I. 

In fact, let A n > 0, n = t ,  2 . . . .  b~ such that & (n; An) ~< p (n). Setting 
,Sn = min  {A1 . . . . .  An} / 2 n, n = t ,  2 , . . . ,  we have ~n ~ An and the se- 
quence of ~n ~ 0 decreases strictly monotonically. Setting 
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A (r)  = 8n+ 1 + ( r  - -  n )  (Sn+ 2 - -  8n+ l )  , n • r . .< n + t. n = t, 2 . . . .  

we h a v e A ( r ) ~ S n + l ,  n ~ r ~ n - q -  t ,  so that 

tt (r; a (r)) ~< tt (n -4- t ;  8.÷x) < p (n -4- t )  ~< p (r) 

(we have used the monotonic decreasing of p (r)). We set 

4b(r )=  m i n { e ( r ) ' A ( r ) ' p ( r ) ' t } '  c(r) = min ( F  ( E  (8 ( s )?sx )  ) - 1..<,<~ (2.10) 

-- F (s)) 

0 (r) = rain {F (1), V~ ( (z- -F (r)), b (r) / H (r), e (r), p (r) / (3 k÷' × 
x H~÷~ (r)) } 

n 1 (r) = b (r) 0 ~ (r) ~< b (r), n (r) = nl ( ¢  (1/s (2F (r) -4- a))) ~< nl (r) 

The functions 0 (r), n (r) and b (r) decrease monotonically in r ) t and are posi- 
tive and continuous. By N we denote the collection of all pairs (t, z), t ~ 0, z E 
R ,  such that Izzl ~< n (n (t, z)) (2. n )  

3. L e m m a  2. Forever]  ( t , ,  z . ) E N  the inequality luz(s)l~<g(~l (s)), 
8 ~ I ,  is satisfied for any motion z (t) = z (t; t , ,  z , ,  u*,  v*) on the interval 
I ,  -~ [ t , ,  t ,  -3 t- 0 (~1,)] (we retain this notation in what follows). 

In fact (here and later t (s) ~ / (s, z (s), u (s), v (s)) and gi (s) ~ gi (s, z (s), 
u (s), v (s)), i = t , . . . ,  ~) 

t t 

z (t} - z ,  = ~ 1 (s) a~, , .  (t) = ~ , ,  + ~ ~1 (s) as (3.1) 
to t .  

So that by virtue of (2.7),(2.8) and (1. 2) 
t 

I nz Ct) I < I ~z, I + ~ x (n (s)) ds < I nz ,  I + X (¢  (F (n,) + ~)) • -.< (3.2) 
t .  

I nz ,  I + xH (~!,), t ~ T, 

Iz( t}--  z , l < X ( , ~ ( n , ,  x))T < x(H (n , ) - -  ~}, t ~  I, 

From the first inequality in(3.2)  we have (see (2.10) and (9.11)) 

I z z  (t) l ~< 1/4 E (• ,)  -q- b (~],) • 1/~ (8 ( ~ , )  -~  I~1) < 8 (~9 s (TI, , '1~)) < 

e(n( t ) ) ,  t ~ t ,  

The last inequality follows from the monotony of 8 (r) and from inequality ( 1. 2).while 
the penultimate one is a consequence of the inequality 

x + F (n , )  ".< F (g (V, (8 (n , )  + e.,))) 
following from (2. 10) as well as of the monotony of the functions 1I) (s) and e (r). 
The 1emma is proved. 

L e m m a 3. When Condition 1 is satisfied, the equality 

~ z ( 0  = r(1;)  + re ( t )  + X ( t )  + h ( t )  ¢3.3) 
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holds for any 0 ~ t ,  -~ t and for any motion z (t) = z (t; t , ,  z , ,  u*, v*)such that 
I ~z (s) l ~< ~ (n (s)), t ,  < s < t. Here 

t 
I (t) = I (t --  s) k-1 (3.4) "(k -- i)l g~ ( t , ,  z ,  - -  n z , ,  u (s), v (s)) ds, 

t. 

rtz(t)~-'g~li(t--s)t-1 "'ds 
1 t. ~ gi (S) 

I¢ t 

r = + y ,  h, . , ,  I - i--'----T~ ~' '  h (t) = ~ p (s) d$ (3.5) 
i=1 t. 

p (s) - ~ ot + o, 

[gk (s) - -  g~ ( t , ,  z ,  - -  n z , ,  u (s), v (s))l 

Lemma 3 follows from the second equality in (3.1) by a k-fold integration by parts 
with due regard to relations ( 2 . 1 ) -  (2.3). 

Now let ( t , ,  z , )  E N ,  t ~ I ,  and z (t) = z (t; t , ,  z , ,  u*,  v*) be an arbitrary 
motion (we recall that by notation z ( t , )  = z , ) .  From Lemma 2 it follows that Lem- 
ma 3, together with ( 3 . 3 ) -  (3.6), is valid for z ( t ) .  Let us estimate the second and the 
fourth terms in (3.3). By virtue of (2.4),(2.7),  (2.8),(1.  2) and (3.2) we have 

k ~ l i  (t - -  s)i-1 I rn (t) l < ~(~ - t)I I nz (s)I~+X-~m~ (s) ds < (3.7) 
i=1 t, 
k--1 

H (n,)  Y, ~ (I ~ z ,  I + ~H (n,))~÷~-', t ~ i ,  
t = 1  

(here mt (s) --= mt (s, z (s), u (s), v (s)), ~ = t , . . . ,  k - -  t ) .  For p (s) we have 
the estimate 

I p (s) l ~< ~ ,  (n (s)) + o~ (H (n,);  • + I z (s) - -  z ,I  + I ~ z ,  I) (3. s) 

(see (2.8) and the properties of o~ (r; 6) ), because 

n ( t , ,  z , . -  ~z , )  < n ,  < H (n , ) ,  n (s) < ~ ( l / , ' (F (n , )  + ~ ) )  < 
g (-~,) 

[(s - t , p  + Iz (s) - (z ,  - nz,)I']V. ~< ~ + Iz (s) - z ,  I + ~ z ,  I 
From (3.1) follows (see (3 .2 ) )  x -~- Iz (s) - -  z ,  I "~ ~H (~l,) ; therefore, finally 
(see (2.9) and (2.10)) : 

Ih (t)l ~< x~+XHbl,) + "¢'~ (n,), I ~ z , l +  xH(n,)~< x~ (xH(~l,)-t- (3.9) 
P ( n , ) ) ,  t ~ 1 ,  

(here we have used the inequalities I n z ,  I • 1/, A (~1,) and xH (~1,) < 0 (rl,) × 
H (n, )  < 1/, a (n, ) ) .  

4 .  We introduce the notation of a special control of player V. Let ( t . ,  z , )  ~ N 
and let w ~ 1/2 "f (lq.) S.  Then, for every control u* = {u (s), s ~ t . }  a control 
vw* :-- {vw (s) = V (u (s), w ) } ,  called special, exists (we drop the indices showing 
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dependency on t ,  and z,)  such that 

gk ( t , ,  z ,  - -  ~z , ,  u (s), vw (s)) : - -  k lw,  s > l t ,  (4. 1) 

The function V (u, w) can be chosen [3] so that the function vw (s), s ~ t ,  is mea- 
surable for any measurable u* and for fixed w. Multiplying (4.1) by (t - -  s) k-1 and 
integrating from t ,  to l, we obtain 

t 
I (t) = I (t -- S)/t-1 (k -- t)I gk ( t , ,  z ,  - -  n z , ,  u (s), v~ (s)) ds : - -  wC,  ~ >i 0 (4. 2) 

t, 
5. Let us describe the active behavior of player V. Let game (1. 1) commence at 

the point ( t , ,  z,)  ~ N. Then.by virtue of Lemma 1. we carl find vector 

w = w (t , ,  z,)  ~ ~/~ ~, (~,) S 

for the polynomial T (1:) given by formula (3.5).such that IT (x) - -  wxkl 
4p 01,) x ~, 0 ~ x ~ 0 01,). We fix the vector w thus found and we direct player V 
to apply the special control v (s) ~ vw (s)(see Sect. 4) on interval I , .  Then from 
Lemma 3, the estimate (3.7) and (3.9) and the equalities (3.3) -- (3.6) and (4, 2) we 
have k--I 

I nz (t) l > 40 01,) xk - Y, x~H (n,)  (I nz ,  I + ~H (rl,)) k+x-~ - (5.1) 

~k (~H (n,) + p (~,)) 
for t ~ I , .  

From formula (3.1) follows (see (3.2)) 

I~z (t) I > I~z,I - x H 01,), t ~ I ,  

Therefore, for an x ~ [0, 0 (n,)] N [0, I ~ z , [ / ( 2 H  (TI,))] we have 

I nz  (t) l > 1/21 nz , [  > 1/2l n z ,  [ k (6.2) 

Formula (5.1) yields k-1 k+l-i 

I~'[Z(t) l >3p(l~$)'[k- Tk+l/_/(~$)[~ ~ i ~  l (L~ . -~  H(~g)) 1 > (5,3) 
k-1 

3p (1~,)'l:k--~k+lH (~.) [~ -31- i~ 1 (3/-/(1~,))/f+1-t] > 

C [3p (TI,) - -  T3 u+l (H 01,)) ~+~] > 2p (T1,) C > p QI,) In'-, I ~ 
(2H (~l,)) ~" 

for those same ~: ~ I0, e (~,)]  for which ~ ~ l ' z , l  / (2H 01,)) (see (2,10)), Since 
by virtue of (1. 2) 

3F (1],) -- F QI (t)) > F (~1,) - -  x > F (TI,) - -  a - F01,) > t ~ I ,  
2 2 ' 

and. commquently. 2F 01 (t)) at- a 
F ( T I * ) ~  3 , t e l ,  (5.4) 

then 
J ~  (t) l >  q 01(t)) J ~z ,  I ~, t ~ .i, ¢5.5) 

q ( r ) =  rain { +  p ,  ({l) (2F ( r )3+a) )  / [ 2 H  ( ~ ( .  ~)]k} (5.6) 
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together with (5.2)  and (5.3)  yield the monotony of the functions p (r) and H (r) . 
According to the penultimate inequality in (5.3),  we have (see (5 .4) )  

Iz~z (t*)[  > 2 0 (~ . )  (0 01.))  ~ > n (1] (t*)) (5.7) 

at the instant t* -~ t .  -~- 0 (~1.) (i. e. when T : 0 01.))  ; therefore, the point ( t*,  
z ( t*))  does not belong to N .  

6 .  T h e o r e m  on e v a s i o n  f r o m  c o n t a c t .  Evasion from contact is possible 
if Condition 1 is fulfilled for the differential game (1.1) .  Here, for every initial point 
(to, Zo) of the game.  t o > 0, Zo E R \ M ,  a suitable choice of the escape control 
v* = {v (t), t > to} can ensure the foUowing estimate for the quantity ~ (t) = 
I nz  (t) I, t > t0: 

[ 8 01 (t)), t ~ to for (to, z0) ~ N 
[( t )>{(5( to))~6(y( t ) ) ,  O < t - - t o < O ( n ( t o ,  zo)) for (to, z o ) ~ N  (6.1) 

[ 6 01 (t)), t ~ to q- 0 (r I (to, z0)) for (t0, zo) ~ N 

Here 6 (1") and 0 (r), r ~ I are monotonically-decreasing continuous positive func- 
t_ions of their argument, depending only on game (1.1)  and not depending either on the 
initial values of the players' phase coordinates or on the run of the game, N is a cer- 
tain fixed closed domain, depending only on game (1. 1), in the space [0, -~- oo) × R ,  
whose interior contains the set [0, + oo) × M .  

P r o o f .  We fix set N by formula (2. 11). Then, no matter  how player U constructs 
his own control u*  = {u (t), t ~ to} ,we propose that player V conducts the escape 
(recall that [1] at each instant t player V knows z (s) and u (s), s ~ t) inductively 
by cycles so that each m- th  cycle (m ~ i )  consists of two intervals: (1) the interval 
of passive escape of duration xm,on which player V applies the control v* = v0* = 
{z, (t) =" v0}, where once and forever v 0 is a fixed vector from Q, and (2) the interval 
of active escape,.following it, of duration 0m, on which player V applies the special 
escape control vw, n (see Sect. 5 for the choice of win). The duration of each interval 
is determined inductively in the following way: "c I = 0 if (to, z0) ~ N and T I ~  0 
is the smallest positive root of the equation I~z (to q- "q) l = n (~ (to q- ~1)), where 
z ( t )  ~ z ( t ;  to, zo, u* ,  v0* ) if (to, z0) ~ N ;  0x --~ 0 (r I (to q- Xl)) see (2.10)): 
here w, ~--- w (to q- T1, z (to q- xt)) on the first active part. 

For ra ~ 2 the quantity "rm ~ 0 is the smallesi positive root (see (5.7)) of the 

equation I~xz ( Tm_l -t- %n) I : n (~1 ( Tin-1 -t- "rra)) 
where 

/'~ = to + ~ ,  (Tj + Off, z (t) ~ z (t; rm-~, z (Tm-~), u*, ~,o*) 

T* The quantity 0ra ~ 0 is given by the formula 0,n = 0 (~1 ( r , - ,~) ) ,  where T~_~ - -  
Trn-1 -~- "r ; tom ~--- to (Tin-,, z (Tin-t)) and z (t) ~ z (t; Tin-l, z (T'm-t), u*, 
v~,n ) on the m- th  active part. 

Let us obtain estimate (6. D. We set 

8 ( r ) =  m i n { n ( r ) ,  q ( r )nk ( * ( ~ ' " CL) 3+~) )  (6.2) 

Then on the passive part (see (9.. 11) and (5 .7 ) )  the estimate follows from the definition 

of set N ~ (t) > n (n (t)) > 8 (n Ct)) (6. z} 
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On the m-th active part (m ~ 2) ,by virtue of (5 .5) , (5 .4)  and (6.2) we have 

* k (t) > I~ ( T ~ - 0 I  q 01 (t)) = n k (n (T'~-l))q O1 (t)) > 8 (rl (t)) (6.4) 

On the first active part the estimate (6.1) follows from (5.5) if xl ----- 0 and coincides 
with (6.4) if T 1 > 0. 

Let us now show that Tm ~ -{-oo as ~ --~ -~-co. We assume the contrary. If Tm--~ 

To, then the series 01 -~- 02 -}- • • • ~ To - -  to converges, so that 01 -- ,  O, as, ] =-~ 
~-oo, Hence,by virtue of the monotony of the function 0 ( r ) ~  0 we have II (T,n-x)-~ 
~t-oo. Since T~-I  --~ To, it follows that Iz (T~n-x)] - ~  -~-oo as T~-1 "-~ To. However, 
the latter contradicts condition (c) of Sect. 1. The theorem is proved. 

7,  C o n d i t i o n  2. The numbers T o ~ 0 and 0 ~ 0 and the function r (t), 
contiuuous on [0, 20] and positive on (0, 20], depending only on game (L  1),exist 
such that for any to ~ T0 and z0 ~ / t /  we can construct a Volterra operator [1] St  = 
St  (to, Zo, U*) defined on the interval [ (to) = [to "4- 20] and associating with the 
initial value (to, Zo) and with the control u* = {u (t), t E I (to)}the control 

~* = {v (t) = St  (to, Zo, u*) ,  t ~ I (to)} (7 .1)  

such that for every control u* the inequality 

I~z (t) l ~ r (t - -  to), t ~ t (to) (7 .2)  

is fulfilled for the motion z (t) = z (t; to, Zo, u*,  ~*) (~* is given by formula(q.1)). 
C o n d i t i o n  3. Constants K > 0  and D > 0  exist such that 

11 (t, Zl, u,  v,) - -  ] (t,  z2, u,  v2)[ ~ K [  zx - -  z~[ + D (7 .3 )  

for all t ~ x o ,  zl, z ~ R ,  u ~ P ,  Vl, v ~ Q .  
T h e o r e m  on / - e s c a p e .  Let Conditions 2 and 3 be satisfied for game (1. D. 

Then, for every to ~ To and Zo ~ R,  1-evasion from contact [6] is lxmible for a 
game starting from the point (to, Zo), where 

e K s  _ _  | 

1 = min lz (s) > 0, Ix (s) = max {r (s), p (s)}, p (s) = r (0 + s) - -  D - -  
s~[o, 0] K 

P r o o f .  Let to ~ 0 a n d z  0 ---- z ( t 0 ) . W e s e t  ~n = to d- n0~ n = 0 ,  t . . . . .  
For an escape beginning at instant to from point Zo we propose to construct inductively 
on each of the intervals I n ---- [~n, ~n+l), n =- 0, i ,  2 , . . .  the con t ro lv - -~v( t )  
by the role 

v.* = { v . ( t ) ~ S t ( ~ . , z . , u r i * ) ,  t ~ I r i } , u n *  = { u ( t ) , t ~ I r i }  (%4) 

where zn = z (~n) is the value of vector z (t) at instant 13n. Then, the inequality 

I r~z( t ) l - - - - Inz( t ;  ~ ,  z . ,  u .* ,  v . * ) l > r ( t - - f ~ . ) ,  ~,,~< t<~fJ,,4, 

is valid by virtue of (% 2). For n > t we have the representation 

~z  (t) = nz~ (t) + y .  (t), "t e t .  

Z n ( t ) ~  g ( t ;  ~ r i - l '  Zrt-1, UnO*, /)rl0*), /,$110 $ = {U ( t ) ,  ~ r t - I  < 

t ~< firi+,} 
vrio* = {vrio (t) ~- St  ([~ri-x, z . - t ,  urio*), 1~--I < t-~< I~.+,} 

xri ( t ) =  z (t; ~n, zri, uri*, v r i * ) -  z (t; It,,-,, zri-,, U.o*, vrio*) 
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(t)  = (t)  

Since xn (~n) = O, by virtue of(3.  D and (q. 3) 

[z(t~--zn(t)[=,x,~(t)[=l~!(/(s,z(s),u(s), vn(s))--/(s, zn(s),u(s) 

vn0 (s))) es < ( g  I z (s) - -  (s) f + D) ds 
~n 

Hence, by virtue of the Gronwall inequality [7] 

Ix. ( t ) l~< D (e K(t-'~n)- t )  / K = h (t - -  [3n), t ~  I,~ 

so that [Y~ ( t ) 1 %  [x~ (t)[ % h (t - -  13n) and, hence(see Condition 2) 

I~z(t)  l >  I ~ z n ( t )  l - -  lYn(t) l > r ( t - - ~ n - 1 ) - - h ( t - - I ~ , ~ )  = (7.5) 

o ( t - - ~ n ) ,  r e in  

The theorem's assertion foUows from formulas (7.4) and (7.5). In conclu~.on we merely 
note that since r (s) > 0, 0 < s ~ .  0 and p (0) = r (0) > 0, we have 1~ (s) > 0, 
0 ~ s -~ 0, while by virtue of the continuity of 1 • (s) the last inequality implies the 
positiveness of l. 

Pontriagin [1] and Nikol'skii [8] showed that Conditions 2 and 3 are fulfilled when 
their escape conditions are fulfilled. 

8.  Let us consider a problem with a small parameter. We assume additionally that 
the right-hand side of Eq. (1. 1) can be represented as 

] (t, z, u, v) = F (t, z, u, v) A- eq~ (t,  z, u,  v) (s. 1) 

where the function F (t, z, u, v) satisfies conditions (a) -- (c) of Sect. 1 and e ~ [0, 
t] is a nonnegative parameter. We introduce the dependence of the right-hand side of 

(1. 1) on parameter 8 into the notation. For a given ~ ~ [0, 1] we denote the game 
( t . t )  by ( t . l h ,  and the motions of this game by z(t; e) = z (t; to, z0, u*, v*, e). 

C o n d i t i o n  4.  When e = 0 the game ( t . t )0  satisfies Conditiens 2 and 3, and 
in Condition 3 

I / ( t ,  Zl,  U, V) - -  / (t, Z2, U, V)[ ~ IF (t, zl, u, v) - -  F (t, zz, u, v)[-~< (8.2) 

K[  Z 1 - -  z 2 l  

foral l  t ~  T0, Zl, zz ~ R ,  u ~  P ,  v ~ Q .  
C o n d i t i o n  5. The function q~(t, z, u, v) is uniformly bounded on [T0, -4- 00)5< 

R X P X Q; namely [q~ (t, z, u, v ) [ ~  t (8.3) 

T h e o r e m  on e s c a p e  in a s m a l l - p a r a m e t e r  p r o b l e m .  Let Conditions 
4 and 5 be satisfied for game (1. 1). Then for any initial point ( t . ,  z . )  of game (1. 1), 
at which t ,  ~ x 0  and z ,  ( ~ M .  there exists e ,  = e ( t , ,  z , )  > 0  such that eva- 
sion from contact is possible in the game (i . t)~ with initial condition z ( t , ;  e) = z ,  
for every e ~ [0, e , ] ,  

P r o o f .  We set 
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r0 = rain r (s) > O, 
o ~ s ~ o  

r (r) --- Fl(re(B+l)) 
We fix (see 0 in Condition 2) 

l xz,  I I 
T , = m i n  1 , 0 ,  2 r ( q , ) ' K  

F l ( r )  = s u p l F ( t ,  z , u ,  v) l + 1 
X(r) 

Kro ~'~ In ( i  q- 
-~-~/J 

(8,4) 

roK I 
4 (e 2KO - -  I) 

r , K  
r ,  -----,~[,,.minel r (s) > 0; e ,  = e ( t , ,  z , )  = min  ].2 (e Ke --  t) '  

For e E [0, 1] from (3.1) (as in (3.2))  we have (by virtue of the inequality b]'l ~ .  
(B -+- t )  ~1 obtained in Sect. 1) the inequality 

]nz (t; e) l > Inz.  I - -  ~ r  (n . ) ,  0 ~< x = t - t ,  ~ t 

for any motion z (t; e) ~ z (t; t , ,  z , ,  u* ,  v*; e ) .  So that 

Inz(t;  e)l > 1/~1 n z ,  I, 0 < ~ . . < ~ .  (8 .5)  

Now let e be an arbitrary fixed number from the segment [0, e , ] .  We set f n  = 
t ,  q-- nO, n = O, t ,  2 . . . .  For an escape in game ( t . t ) ,  ,starting at instant t ,  
from point z . ,  we propose to construct inductively on each of the intervals In  = [flit, 
fn÷l) ,  n = 0 , t ,  . . . the control v = v ( t )by the role 

vn* ~ {vn (t) ~--- S t  ( f . ,  zn, u . * ) ,  t ~ I n }  (8.6) 
z., = z (~,~; e), u . *  = {u (t), t E I . }  

where operator S t  is constructed (see Condition 2) for the game ( t . t )0 .  
For n > t we have the representation 

n z ( t ;  e) = nzit (t) + xn (t) + Yn (t), t @ In 

z n  ( t )  ----- z (t; fn-1, Zn-1, uit0*, /)no*; 0), uit0* = {u (t), fit-1 
t <  Pit+l} 

Vito* = {Vito (t) -~ St (fn-1, zit-a, uno*), fn-1 ~< t ~< fn*,} 

(8 .7)  

x,, (t) = n e ,  (t) ,  Yn (t) = n A  n (t),  Ait (t) = Zn (t; 0 ) - - z i t ( t )  

eit (t) = z (t; f n ,  zn, u , * ,  v ,* ;  e) - -  z ,  (t; O) ----- z (t; e) - -  z ,  (t; O) 

zit (t; O) ---- z (t; 8 . ,  zit, u . * ,  vit*; O) 

Let us estimate each of the summands in (8.7). By virtue of condition (7.2) 

Inzit (t) l >  r (t - -  flit-O, t ~  I . ,  . >~ 
Since en (Bit) --=- O, 

t t 

I d a .  (s) ds e .  (t) = ---77-, 

u (~), v .  (s))) ds 

(8.8) 

~ ( /  u (s), v .  (s)) - -  (s, z . ( s ;  0) (s, (s, z F 

~n 

So that 
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l 

l a ~ ( t ) l < a  I Icp(s'z(s;e) , u('s)'v~(s))lds÷ 

u (s), Vn (s)) - -  f (s, z,, (s; 0), u (s), Vn (S)) ] ds 

Hence, by virtue of Conditions 4 and 5 

I an (t) I ~< (t - -  ~n) e ÷ 

So that by Gronwall's lamina 

Ix,~ (t) l~< len (t) l~< aC (t --  g,~), 

c(s) = (e K s -  I ) / K  

t 

f K I an (s) I ds 
Dn 

! 

I I F(s'z(s;e)' 
C~ n 

t ~ I n ,  n = 0 , 1 , . . . ;  (8.9) 

For the quantity An (t) we have An (~n) = z (~n; e) - -  zn-1 (~n; 0). Hence by 
virtue of (8.9) 

IA , , (~ ,~ ) l<ac ,  c::c(O), n : t , 2  . . . .  (8.10) 

Therefore, according to Condition 3 
t 

I h,, (t) l < ec + f I F (s, an (s; 0), u (s), Vn (s)) - -  F (s, z= (s), u (s) 
~n 

t 

V~o (s))lds < ec ÷ I (K I An (s) l -t- D) ds 
~n 

Hence by Gronwall's lemma 

g ( t - ~ n )  D Jy . ( t )  J < l A n ( t ) l . ~ ( e c +  D ) ~  _ r < e c e ~ : O ÷ O c ( t - - ~ n  ) (8.11) 

Combining (8.7) -- (8.9) and (8.11), for n ~ i we obtain 

Izz (t; a) l >~ r ( t  - fin ÷ O) - a (ce K° ÷ c (t - ~ . ) )  - (8 .12)  
D c ( t - - f i n ) = p ( t - - f i n ; a ) ,  t ~ t , ,  

Here p(s ;  a) -:  r (O ÷ s) - -  Dc (s) - -  e (c (s) ÷ c a  K°) > p ,  (s) (8.13) 

s E [0, 01; o ,  (s) = p (s; ~,) 

For n ~ 0 we have as well the representation (see (8.7) for the notation) 

zz  (t; e) = ~xz,~ (t; O) ÷ xn (t), t ~ I n (8.14) 

Since by virtue of Conditions 2 and 4 and also of inequality (8.9) 

Ir~zn(t; 0) l > r ( t - -  fin); Ix , ( t )  l - ~  e c ( t - - [ ~ n ) ,  t ~ I , ,  (8.15) 

from (8.14) we have (with p ,  (s) ~--- r (s) - -  e ,c  (s), 0 ~ s ~ 0) 

[nz( t ;  e) l > r ( t - - ~ n ) - - e c ( t - - ~ n ) > p . ( t - - ~ . ) ,  t E I  n (8.16) 

By virtue of the definition of s ( t . ,  z .)  ,from formula (8.16) we have 

Iztz (t; e) l > r ,  - -  e ,c  (0) > r ,  / 2 (8.17) 

on the interval t ~ [ t ,  ÷ "c,, ~1].So that in correspondence with(8.5) 
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I m  (t; e) l > 1/~ r a in  { r , ,  laz,  ] } ~ O, t ~10 

Setting ~x, (s) - -  m a x  {p ,  (s), p ,  (s)} , from (8 .12) . (8 .13)  and(S.  16)we have 

I n z ( t ;  e) l ~  b t , ( t - - ~ , ) ,  t ~ I n ,  n- - - - i ,2  . . . .  (8.18) 

Le tus  show that ~ ,  ( s ) )  0 on [0, 0]. In fact (see ( 8 . 1 7 ) ) , p ,  (s) > r ,  / 2 ~ 0, 
T,  ~ s ~ 0. By virtue of the definition of x ,  (see (8 .4 ) )  we have 

p .  (s) > ro - -  Dc (x . )  - -  e . c  ( t  + e g°) > r0 / 2 - -  e .  (e  2K0 - -  1 )  / K 

on the interval [0, T . ] .  Hence, according to the definition of e ,  we have p .  (s) 
r 0 / 4 ~ -  O, s E [0, T,] .  The positiveness of ~t, (s) is proved. 

Since ~t, (s) is continuous, we have that l ,  = r a in  ~t, (s) ~ O, so that formulas 
s~[0.0] 

(8.16) and (8.18)  guarantee / . -escape in problem (1. 1) for e E [0, e , ]  and z ( t , ;  
8) : Z,. 
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We explain the character  of simplifications which can be carried out in the Ha- 
mil tonian function of a nonresonant system using the formal,  aoncanouical  trans- 
formations. We show the symmetries  of such systems, which are not generated 
by their first integrals. Using a Hamil tonian system with two degrees of freedom 
we show that the noncanonical  transformations retaining its normal form but with 


